

Biomarker-driven asthma management: ready for clinical practice?

Konstantinos (Kostas) Kostikas MD, PhD, FCCP

Associate Professor of Respiratory Medicine, University of Ioannina and Head Respiratory Medicine Department, University Hospital of Ioannina, Greece

e-mail: <u>ktkostikas@gmail.com</u>, <u>ktkostikas@uoi.gr</u>

I was an employee of Novartis Pharma AG (Basel Switzerland - 01.01.2015 to 31.10.2018)

I have received honoraria for presentations and/or consulting services from AstraZeneca, Boehringer Ingelheim, Chiesi, ELPEN, GSK, and Novartis

I am a member of the GOLD Assembly

Letter from Greece

"This may sound overly optimistic, but this time of crisis and austerity may be the greatest opportunity for change of mindset, brave reforms, electronic governance and investment in research and development of new technologies." **Biomarker-driven asthma management: ready for clinical practice?**

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

Biomarker-driven asthma management: ready for clinical practice?

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

Why should we measure biomarkers?

"To measure is to know

If you cannot measure it you cannot improve it"

Lord Kelvin

The Gartner Hype Cycle

FDA

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or biological responses to a therapeutic intervention.

EMA

Biomarkers are tests that can be used to follow body processes and diseases in humans and animals. They can be used to **predict how a patient will respond to a medicine** <u>or</u> whether they have, or are likely to develop, a certain disease.

Clinical applicability of biomarkers in asthma management

Superior (outperform current practice) Actionable (change patient management) Valuable (improve patient outcomes) Economical (cost-saving or cost-effective) and Deployable (technology available in clinical laboratory)

Asthma endotypes and targeted treatment approaches

The clinical problem: discordance between symptoms and inflammation in severe/DTT asthma

Stepwise management - pharmacotherapy

© Global Initiative for Asthma, www.ginasthma.org

bud-form or BDP-form maintenance and reliever therapy # Consider adding HDM SLIT for sensitized patients with allergic rhinitis and FEV >70% predicted

Complicated Biomarkers: Sputum IL-13 and Asthma Control

Tsilogianni Z,... and Kostikas K, Clin Exp Allergy 2016; 46: 923-931

Complicated Concepts: FeNO and EBC in Asthma Control

FeNO >30 and/or EBC pH <7.20 identified 88.3% of not-well controlled patients

Strategy for asthma management based on sputum cell counts

Sputum Biomarkers in Paucigranulocytic Optimally Treated Asthma

Neutrophilic: $\geq 60\%$ neutrophils and <3% eosinophils Eosinophilic: $\geq 3\%$ eosinophils and <60% neutrophils Mixed: $\geq 3\%$ eosinophils and $\geq 60\%$ neutrophils Paucigranulocytic: <3% eosinophils and <60% neutrophils

14.8% of patients with paucigranulocytic asthma had poor asthma control

Biomarker-driven asthma management: ready for clinical practice?

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

Blood Eosinophils and Asthma Disease Burden

						Adjusted RR and OR (95% CI)	Severe exacerbations	5	Adjusted RR (95% CI)	
							201–300 cells per µL (n=25882) ■		0.94 (0.91-0.98)	
							301–400 cells per µL (n=15030)	•	1.08 (1.03-1.13)	
							401–500 cells per μL (n=8659)	•	1.16 (1.09-1.24)	
								501–600 cells per µL (n=4928)		1.34 (1.24–1.45)
							601–700 cells per μL (n=2726)		1.71 (1.55–1.89)	
							with blood eosinophils >400 cells per µL	701–800 cells per μL (n=1631)		1.49 (1.31–1.70)
								801–900 cells per μL (n=947)	_ .	1.58 (1.33–1.87)
								901–1000 cells per μL (n=1019)	_ 	2.02 (1.72-2.36)
Severe exacerbations					_	-	RR 1·42 (1·36–1·47)*	>1000 cells per µL (n=1019)	_•	2.32 (1.99–2.71)
Acute respiratory events					RR 1·28 (1·24–1·33)*	0.5 0.7 1.0 1.5 2.0 2.5				
Risk-domain asthma control					OR 0.78 (0.75-0.80)*	Adjusted RR	iusted RR			
Overall asthma control							OR 0.74 (0.72-0.77)*	Overall asthma contr	ol	Adjusted OR (95% CI)
				_	1			201–300 cells per μL (n=25 882)		0.92 (0.90-0.95)
	0.7	0.8	0.9	1	1.2	1.5		301–400 cells per µL (n=15030)	-	0.86 (0.83-0.89)
					>			401–500 cells per μL (n=8659)	•	0.80 (0.77-0.84)
		l ower wi	th blood	н	ligher with blood			501–600 cells per μL (n=4928)	•	0.72 (0.68-0.77)
		Aosing	nhilia		eosinonhilia			601–700 cells per μL (n=2726)		0.65 (0.60-0.71)
		COSING	prima		созпортна			701–800 cells per μL (n=1631)		0.63 (0.57-0.70)
								801–900 cells per μL (n=947)	-	0.62 (0.54-0.71)
								901–1000 cells per µL (n=1019) →		0.59 (0.52-0.68)
								>1000 cells per µL (n=1019) →		0.48 (0.42-0.55)
।30,547 asthma patients in the UK OPCRD and CPRD (1990–2013) रR: adjusted rate ratios for severe exacerbations and acute respiratory events								0-3 0-5 0	-7 1.0 1.5 2	1 0

OR: adjusted odds ratios (ORs) for asthma control

Minimally Invasive Markers for Airway Eosinophilia: *Systematic Review and Meta-Analysis*

	Studies in adults	k		
	Studies assessing marker (n)	AUCs included (n)	Patients (n)	AUC† (pooled 95% CI)
FeNO	17	19	3216	0.75 (0.72-0.78)
Blood eosinophils	14	14	2405	0.78 (0.74-0.82)
Serum IgE	7	7	942	0.65 (0.61-0.69)
Serum periostin	2	3	204	0.65 (0.49-0.81)
Serum ECP	2	2	174	0.72 (0.64-0.81)
EBC pH	2	2	96	0.76 (0.63-0.90)
Exhaled VOCs	1	1	18	0.98‡
EBC model	1	1	53	0.69‡
Nasal lavage eosinophils	1	1	130	0.88‡

Local and systemic eosinophilia in uncontrolled asthma

a)

ACQ score

Schleich FN, Eur Respir J 2014; 44: 97–108; Kostikas K, Eur Respir J 2014; 44: 14–16

Biomarker-driven asthma management: ready for clinical practice?

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

T2 high biomarkers and response to omalizumab (EXTRA)

Exacerbation rates										
	Low FeNO at baseline	High FeNO at baseline	Low eosinophils at baseline	High eosinophils at baseline	Low periostin at baseline	High periostin at baseline				
Omalizumab	0.60	0.50	0.65	0.70	0.73	0.66				
Placebo	0.71	1.07	0.72	1.03	0.72	0.93				

Sputum and blood eosinophils and anti-IL5 response

Haldar P, et al., N Engl J Med 2009;360:973-84; Ortega H et al., Lancet Respir Med 2016; 4: 549–56

DP2 antagonism and eosinophilic airway inflammation

Fevipiprant is a DP₂ (prostaglandin D2 receptor 2) antagonist under development for severe asthma

Impact of increasing ICS dose on blood eosinophils

Biomarker-driven asthma management: ready for clinical practice?

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

Sputum eosinophils for asthma management

n=74 patients with moderate to severe asthma from hospital clinics Average daily dose of ICS or oral CS did not differ between the two groups n=117 patients with mild to severe asthma CS: Clinical Strategy, SS: Sputum Strategy (CS + sputum eosinophils ≤2%)

Sputum eosinophils for asthma management

	Sputum Eos Sti	rategy	Symptom St	rategy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
1.2.1 Adult							
Chlumsky 2006	8	30	14	21	26.9%	0.18 [0.05, 0.61]	_
Green 2002 (1)	18	34	26	34	27.2%	0.35 [0.12, 0.98]	
Jayaram 2006 Subtotal (95% CI)	26	45 109	37	51 106	32.6% 86.7 %	0.52 [0.22, 1.22] 0.36 [0.20, 0.64]	
Total events Heterogeneity: Chi² = Test for overall effect:	52 1.92, df = 2 (P = 0 Z = 3.49 (P = 0.00	0.38); I² = 005)	77 0%				
1.2.2 Children							
Fleming 2012 Subtotal (95% CI)	21	28 28	23	26 26	13.3% 13.3 %	0.39 [0.09, 1.71] 0.39 [0.09, 1.71]	
Total events	21		23				
Heterogeneity: Not ap Test for overall effect:	Z = 1.25 (P = 0.21	1)					
Total (95% CI)		137		132	100.0%	0.36 [0.21, 0.62]	◆
Total events	73		100				
Heterogeneity: Chi ² =	1.93, df = 3 (P = 0	0.59); I² =	0%				
Test for overall effect:	Z = 3.70 (P = 0.00	Eavours Sput Fos Strategy Favours Symptom Strategy					
Test for subgroup diff	erences: Chi² = 0	0.01, df = 1	(P = 0.92), I ²	² =0%			r avours oput Los offategy in avours symptom offategy
Footnotes							

(1) p=0.058

FeNO to Guide Asthma Management

118 pts. mild-to-moderate asthma - FeNO-guided vs. BTS management

FeNO for asthma management

Study or Subgroup log[Odds Ratio] SE Total Total Weight N, Fixed, 95% CI N, Fixed, 95% CI 1.1.1 Adults				FeNO strategy	Control strategy		Odds Ratio		Odds Ratio
1.1.1 Adultis Honkop 2014 -0.4463 0.4546 189 203 14.3% 0.64 [0.26, 1.56] Powell 2011 -0.7344 0.2926 111 109 34.4% 0.48 [0.27, 0.85] Shaw 2007 -0.6746 0.4267 58 60 16.2% 0.56 [0.24, 1.30] Smith 2005 0.3863 0.4697 46 48 13.4% 1.47 [0.59, 3.69] Subtotal (95% CI) -0.7244 0.3679 93 88 21.4% 0.48 [0.27, 1.73] Beterogeneity: Chi² = 4.61, df = 4 (P = 0.33); P = 13% Test for overall effect Z = 3.00 (P = 0.003) 497 508 100.0% 0.68 [0.27, 1.73] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Piljenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a -0.0189 0.5667 44 46 5.3% 1.11 [0.37, 3.38]	Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% Cl
Honkoop 2014 -0.4463 0.4546 189 203 14.3% 0.64 [0.26, 1.56] Powell 2011 -0.7344 0.2926 111 109 34.4% 0.48 [0.27, 0.85] Shaw 2007 -0.5746 0.4267 58 60 16.2% 0.56 [0.24, 1.30] Shaw 2005 0.3863 0.4697 46 48 13.4% 1.47 [0.59, 3.69] Syk 2013 -0.7244 0.3679 93 88 21.8% 0.48 [0.24, 1.00] Subtotal (95% CI) 497 508 100.0% 0.60 [0.43, 0.84] Heterogeneity: Chi ^P = 4.61, df = 4 (P = 0.33); P = 13% Test for overall effect: Z = 3.00 (P = 0.003) 1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a -0.9885 0.4454 499 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pinenburg 2005a -0.3011 0.5463 42 47 5.7% 0.77 [0.09, 0.84] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.28 [0.27, 1.74] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ^P = 7.54, df = 7 (P = 0.38); P = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	1.1.1 Adults								
Powell 2011 -0.7344 0.2926 111 109 34.4% 0.48 (0.27, 0.85) Shaw 2007 -0.5746 0.4267 58 60 16.2% 0.56 (0.24, 1.30) Smith 2005 0.3663 0.4697 46 48 13.4% 1.47 (0.59, 3.69) Syk 2013 -0.7244 0.3679 93 88 21.8% 0.48 (0.24, 1.00) Subtotal (95% CI) 497 508 100.0% 0.60 (0.43, 0.84) Heterogeneity: Chi ^P = 4.61, df = 4 (P = 0.33); i ^P = 13% Test for overall effect: Z = 3.00 (P = 0.003) 1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 (0.27, 1.73] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 (0.15, 0.88) Petsky 2015 -1.302 0.5763 31 32 51% 0.27 (0.09, 0.84) Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 (0.37, 3.38) Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 (0.47, 0.94) Szefler 2008a -0.411 0.1776 276 270 54.2% 0.58 (0.47, 0.94) Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 (0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 (0.47, 0.74] Subtotal (95% CI) 641 638 100.0% 0.58 (0.45, 0.76] Heterogeneity: Chi ^P = 7.54, df = 7 (P = 0.38); P = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Honkoop 2014	-0.4463	0.4546	189	203	14.3%	0.64 [0.26, 1.56]		
Shaw 2007 -0.5746 0.4267 58 60 16.2% 0.56 [0.24, 1.30] Smith 2005 0.3863 0.4697 46 48 13.4% 1.47 [0.59, 3.69] Syk 2013 -0.7244 0.3679 93 88 21.8% 0.48 [0.24, 1.00] Subtotal (95% CI) 497 508 100.0% 0.60 [0.43, 0.84] Heterogeneity: Chi ^P = 4.61, df = 4 (P = 0.33); P = 13% Test for overall effect: Z = 3.00 (P = 0.003) 1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a -0.9865 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 51% 0.27 [0.09, 0.84] Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ^P = 7.54, df = 7 (P = 0.38); P = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Powell 2011	-0.7344	0.2926	111	109	34.4%	0.48 [0.27, 0.85]		
Smith 2005 0.3863 0.4697 46 48 13.4% 1.47 [0.59, 3.69] Syk 2013 -0.7244 0.3679 93 88 21.8% 0.48 [0.24, 1.00] Subtotal (95% CI) 497 508 100.0% 0.60 [0.43, 0.84] Heterogeneity: Chi ² = 4.61, df = 4 (P = 0.33); P = 13% Test for overall effect: Z = 3.00 (P = 0.003) 1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szether 2008 -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 52% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); P = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Shaw 2007	-0.5746	0.4267	58	60	16.2%	0.56 [0.24, 1.30]		
Syk 2013 -0.7244 0.3679 93 88 21.8% 0.48 [0.24, 1.00] Subtotal (95% CI) 497 508 100.0% 0.60 [0.43, 0.84] Heterogeneity: Chi ² = 4.61, df = 4 (P = 0.33); P = 13% Test for overall effect Z = 3.00 (P = 0.003) 1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pilhenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); P = 7% Test for overall effect Z = 4.11 (P < 0.0001)	Smith 2005	0.3863	0.4697	46	48	13.4%	1.47 [0.59, 3.69]		
Heterogeneity: $Chi^{P} = 4.61, df = 4 (P = 0.33); P = 13\%$ Test for overall effect: $Z = 3.00 (P = 0.003)$ 1.1.2 Children de Jongste 2008 - 0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a - 0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 - 1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pijnenburg 2005a - 0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a - 0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a - 1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 - 0.5432 0.456 92 89 82% 0.58 [0.45, 0.76] Heterogeneity: $Chi^{P} = 7.54, df = 7 (P = 0.38); P = 7\%$ Test for overall effect: $Z = 4.11 (P < 0.0001)$	Syk 2013 Subtotal (95% CI)	-0.7244	0.3679	93 4 97	88 508	21.8% 100.0 %	0.48 [0.24, 1.00] 0.60 [0.43, 0.84]		•
1.1.2 Children de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 $0.27, 1.73$ Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 $[0.15, 0.88]$ Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 $[0.09, 0.84]$ Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 $[0.25, 2.16]$ Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 $[0.37, 3.38]$ Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 $[0.47, 0.94]$ Verini 2010a -1.4663 0.5746 32 32 $52.\%$ 0.23 $[0.07, 0.71]$ Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 $[0.45, 0.76]$ 4 Heterogeneity: Chi ² = 7.54, df = 7 641 638 100.0% 0.58 $0.45, 0.76$ 4 0.01 0.1	Heterogeneity: Chi ² = 4.61, Test for overall effect: Z = 3.	df = 4 (P = 0.33); l² = 00 (P = 0.003)	= 13%						
de Jongste 2008 -0.383 0.4757 75 72 7.6% 0.68 [0.27, 1.73] Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); l ² = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	1.1.2 Children								
Peirsman 2014a -0.9985 0.4454 49 50 8.6% 0.37 [0.15, 0.88] Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.45, 0.76] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] \bullet Heterogeneity: Chi² = 7.54, df = 7 (P = 0.38); l² = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	de Jongste 2008	-0.383	0.4757	75	72	7.6%	0.68 [0.27, 1.73]		
Petsky 2015 -1.302 0.5763 31 32 5.1% 0.27 [0.09, 0.84] Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 [0.25, 2.16] Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 [0.37, 3.38] Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); I ² = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Peirsman 2014a	-0.9985	0.4454	49	50	8.6%	0.37 [0.15, 0.88]		
Pijnenburg 2005a -0.3011 0.5463 42 47 5.7% 0.74 $[0.25, 2.16]$ Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 $[0.37, 3.38]$ Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 $[0.47, 0.94]$ Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 $[0.07, 0.71]$ Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 $[0.24, 1.42]$ Subtotal (95% CI) 641 638 100.0% 0.58 $[0.45, 0.76]$ Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); I ² = 7\% Test for overall effect: Z = 4.11 (P < 0.0001)	Petsky 2015	-1.302	0.5763	31	32	5.1%	0.27 [0.09, 0.84]		
Pike 2013a 0.1069 0.5667 44 46 5.3% 1.11 $[0.37, 3.38]$ Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 $[0.47, 0.94]$ Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 $[0.07, 0.71]$ Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 $[0.24, 1.42]$ Subtotal (95% CI) 641 638 100.0% 0.58 $[0.45, 0.76]$ 44 Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); I ² = 7\% 641 638 100.0% 0.58 $[0.45, 0.76]$ Update for overall effect: Z = 4.11 (P < 0.0001) 10 10 10 10	Pijnenburg 2005a	-0.3011	0.5463	42	47	5.7%	0.74 [0.25, 2.16]		
Szefler 2008a -0.411 0.1776 276 270 54.2% 0.66 [0.47, 0.94] Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] • Heterogeneity: Chi² = 7.54, df = 7 (P = 0.38); I² = 7% 641 638 100.0% 0.58 [0.45, 0.76] Test for overall effect: Z = 4.11 (P < 0.0001)	Pike 2013a	0.1069	0.5667	44	46	5.3%	1.11 [0.37, 3.38]		
Verini 2010a -1.4663 0.5746 32 32 5.2% 0.23 [0.07, 0.71] Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); I ² = 7% 641 638 100.0% 0.58 [0.45, 0.76] Test for overall effect: Z = 4.11 (P < 0.0001)	Szefler 2008a	-0.411	0.1776	276	270	54.2%	0.66 [0.47, 0.94]		
Voorend-van Bergen 2015 -0.5432 0.456 92 89 8.2% 0.58 [0.24, 1.42] Subtotal (95% CI) 641 638 100.0% 0.58 [0.45, 0.76] Heterogeneity: Chi² = 7.54, df = 7 (P = 0.38); I² = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Verini 2010a	-1.4663	0.5746	32	32	5.2%	0.23 [0.07, 0.71]		
Heterogeneity: Chi ² = 7.54, df = 7 (P = 0.38); l ² = 7% Test for overall effect: Z = 4.11 (P < 0.0001)	Voorend-van Bergen 2015 Subtotal (95% CI)	-0.5432	0.456	92 641	89 638	8.2% 100.0 %	0.58 [0.24, 1.42] 0.58 [0.45, 0.76]		•
Test for overall effect: Z = 4.11 (P < 0.0001)	Heterogeneity: $Chi^2 = 7.54$.	df = 7 (P = 0.38); l ² :	= 7%						-
	Test for overall effect: $Z = 4$.	11 (P < 0.0001)							
								0.01	U.1 1 10 1 Foreuro Follo strategy Foreuro control strategy

Test for subgroup differences: Chi² = 0.01, df = 1 (P = 0.92), l² = 0%

FeNO strategy in Pregnancy

Exacerbations: 0.288 vs 0.615 exacerbations per pregnancy Incidence rate ratio (IRR) 0.496, 95% CI 0.325-0.755; p=0.001 (NNT = 6) FeNO group: ↑ quality of life & ↓ neonatal hospitalizations

ICS or TIO for Mild Asthma with Low Sputum EOS (SIENA)

A Differential Response to Three Trial Agents

73% were classified as having a low eosinophil level (<2%)

B Primary Analysis

Percent of Patients with Differential Response

FeNO for asthma diagnosis in young adults

	А	.11	Nonsr	nokers	Smokers		
Cut-off Points	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	
> 30 ppb	25.4 (15.3-37.9)	94.9 (90.1–97.8)	41.0 (25.6-57.9)	94.3 (88.1–97.9)	4.8 (1.6–14.4)	96.0 (86.3-99.4)	
> 25 ppb	30.2 (19.2-43.0)	91.7 (86.2–95.5)	46.2 (30.1-62.8)	$91.5\ (84.5-96.0)$	6.2 (3.7-21.2)	92.0 (80.7–97.7)	
> 20 ppb	49.2 (36.4-62.1)	85.3 (78.7–90.4)	64.1 (47.2–78.8)	84.9 (76.6–91.1)	25.0 (9.8-46.7)	86.0 (73.3-94.2)	
> 15 ppb	68.3 (55.3–79.4) 85 7 (74.6, 02.2)	66.0 (58.0–73.4) 24.6 (27.2, 42.6)	79.5 (63.5–90.7)	65.1 (55.2-74.1)	50.0(29.1-70.9)	68.0 (53.3–80.5) 44.0 (20.0, 58.7)	
> 10 ppb	oo.1 (14.0–93.2)	34.0 (27.2–42.0)	94.9 (62.0–99.2)	30.2 (21.7–39.9)	(0.8 (48.9–87.3)	44.0 (30.0–38.7)	

Asthma vs. Other ALL - - - Combined Asthma or Rhinitis vs. Other Asthma vs. Other (excl. Rhinitis) - - Asthma vs. Rhinitis

FeNO Predicts Control in DTT Asthma

- 102 consecutive patients with suboptimal asthma control received SFC 50/500 for 1 month then, those who remained uncontrolled received oral CS for 1 month
- 53 patients (52%) gained control
- Those who achieved control were more likely to have
 - positive skin results (60.4 % vs. 34 %; p = 0.01)
 - positive bronchodilator test (57.1 % vs. 35.8 %; p = 0.02)
 - PEFR variability ≥20% (71.1 % vs. 49.1 %; p = 0.04)
- FeNO ≥30 ppb demonstrated a sensitivity of 87.5% and a specificity of 90.6% for the identification of responsive asthmatics (AUC=0.925)

ΔFeNO and Asthma Control: Smoking & Allergic Rhinitis

Non Smokers

- A single measurement of FeNO >45 ppb was related to poor asthma control (NPV 88%)
- FeNO reduction by 40% was associated with asthma control optimization (NPV 79%)
- FeNO increase by 30% was associated with loss of control (NPV 82%)

Smoking asthmatics

- FeNO decrease >20% precluded asthma control improvement (NPV 72%)
- FeNO increase <30% was not associated with asthma control deterioration (NPV 84%)

	Optimal cut-off point	Sensitivity (95% CI)	Specificity (95% Cl)	PPV	NPV	AUC (95% CI)	p-value
Asthma without rhinitis [#]	>30%	0.83 (0.64–0.94)	0.87 (0.68–0.97)	0.89	0.81	0.893 (0.777–0.961)	<0.0001
Asthma with rhinitis [¶]	>40%	0.72 (0.53–0.86)	0.92 (0.74–0.98)	0.92	0.71	0.786 (0.657–0.884)	<0.0001

The optimal cut-off points represent values with the best combination of sensitivity and specificity. PPV: positive predictive value; NPV: negative predictive value; AUC: area under the receiver operating characteristic curve. *: n=52; n=58.

Michils A, Eur Respir J 2008; 31: 539–546; Michils A, Eur Respir J 2009; 33: 1295–1301; Papaioannou AI, ... and Kostikas K, Eur Respir J 2009; 34(4): 1006-1007

ICS Nonadherence: FeNO Suppression Test

Adherent patients (n=13; black squares) Nonadherent patients (n=9; gray circles)

Difficult asthma patients (GINA Steps 4 & 5) with an elevated FENO (>45 ppb) Recruited as adherent (ICS prescription filling >80%) or nonadherent (filling <50%) DOICS: directly observed inhaled corticosteroid treatment

McNicholl DM et al., Am J Resp Crit Care Med 2012; 186(11): 1102-8

ICS Nonadherence: remote monitoring & FeNO Suppression Test

Heaney L et al., Am J Resp Crit Care Med 2019; 199(4): 454-464

Assessment protocol in consideration of biologic therapy

Biomarker-driven asthma management: ready for clinical practice?

- The hype around biomarkers
- Blood vs. sputum vs. exhaled air
- Biomarkers and biologics
- Management of DTT asthma
- The way forward

- Sputum cell counts require a dedicated laboratory
- FeNO is confounded by ICS, smoking and atopy but cost-effective (?)
- Blood eosinophils are a modest predictor of airways eosinophilia
- Cut-offs need to be refined
- Longitudinal studies including appropriate populations are needed

Breathomics: Clinical and inflammatory phenotyping in chronic airway diseases irrespective of the diagnostic label

Emerging biomarker networks for targeted treatment in asthma

Managing asthma in the era of biological therapies

Would we ever consider that without biomarkers?